If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+15y-9=0
a = 1; b = 15; c = -9;
Δ = b2-4ac
Δ = 152-4·1·(-9)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{29}}{2*1}=\frac{-15-3\sqrt{29}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{29}}{2*1}=\frac{-15+3\sqrt{29}}{2} $
| 4x+4+6x+36=180 | | 24x+8=2x-2 | | -2=2+r/4 | | 7x+2=26-5x | | 7+2/5y=3/5y-6 | | 3u/2=42 | | 2=3/8n | | 68x^2+1=16 | | 12x-42x=14x | | 12x+42x=14x | | 1/2x^2-11/4x+5/4=0 | | 145x+123x=312x | | 3(2x+12)=2(3x+15) | | 5(3x-2)=2(7x-3) | | 2x+9=9+17x | | 1x-48=6x-84 | | -10=-10+7p | | 24=(x+4)+(4x)+(10x-10) | | 3/2(4x-1)-3x=5/4(x+2-) | | -6s–8=22 | | 5x+7x−12x+14=6 | | 18x-5=41 | | C=20-1r/0.5 | | y=4(5)+25 | | 7x=1491 | | a÷3=36 | | 393x+5=791 | | 234x+23=1193 | | 234x+678=1170 | | 5(2x+4)=3x+7 | | 2401x+23=16830 | | 1/2p+p=81 |